Vespa.ai

Best Practices for Large-Scale
RAG Applications

Guided by The RAG Blueprint

We Make Al Work © Vespa.ai Norway Al. Nov 2024

Vespa.ai

Vespa.ai is an Al Search Platform for developing and
operating large-scale applications that combine big data,
vector search, machine-learned ranking, and real-time
inference. With native tensor support for complex ranking
and decisioning, Vespa enables real-time Al applications
like RAG, recommendation, and intelligent search—at

enterprise scale.

© Vespa.ai Norway Al. Nov 2024

Contents

A Introduction 3

2 Choosing the Right Document Unit 4

2 Modeling Document Signals 5

72 Defining a Retrieval Strategy 6

72 Organizing Queries for Scale 7

7 Optimizing Recall with Binary Vectors 8

7/ Designing Fields 9

2 Combining Signals 10

72 Ranking with Machine Learning 11

2 Ranking in Multiple Phases 12

21 Conclusion 13

21 Customer Case Studies 14

2 All contents contain linked titles.

Best Practices for Large-Scale RAG Applications

Introduction

© Vespa.ai Norway Al. Nov 2024

As Retrieval-Augmented Generation (RAG) systems scale, the same
architectural challenges continue to surface:

e What's the right size for your searchable unit?

e Should you rely on keywords, vectors, or both?

e How do you keep costs under control as the system scales?
e And how do you make ranking accurate and efficient?

We've seen these issues firsthand while working with teams like
Perplexity, and that's why we created The RAG Blueprint. It's a
practical playbook that walks you step-by-step through each stage
of system design, helping teams build more accurate, cost-efficient,
and production-ready applications.

This ebook distills the highlights from the Blueprint, so you can learn
the best practices even if you're not actively building today.

You'll gain a clearer understanding of what it takes to make RAG
accurate, scalable, and cost-efficient, including pro tips on how
Vespa makes it possible.

Best Practices for Large-Scale RAG Applications

Choosing the Right Searchable Unit

One of the first decisions in any RAG system is choosing the

Aim for a unit size that balances context with retrievability.

rigcht unit of retrieval vervthing else in the pipeline
ght unit of retrieval, because every g pip For example:

Including retrieval accuracy, ranking quality, cost efficiency, .
e |arger paragraphs, or a few paragraphs combined, tend to work well

for chunks.

e When in doubt, err toward larger units rather than smaller ones.
The document unit (sometimes called the searchable unit) Modern models are getting better at handling larger contexts.

and LLM answer quality depends on this choice.

means the size and boundaries of the chunk of text that you

iIndex and retrieve. It's the atomic piece of content that your

search engine retrieves and returns when a user query comes Too Small Balanced Too Large
In. It could be a page, a paragraph, or even a sentence.

The RAG Blueprint guides you through this choice because it —_—

has a direct impact on retrieval accuracy, context, and

efficiency depending on the size you choose: —

e Too small: Early approaches often chunked documents

into very small pieces (e.g., a paragraph per chunk). While S —

this maximized the chance of catching relevant text, it

sacrificed context. You'd retrieve fragments that lacked
the surrounding information needed for accurate ranking Figure 1. Example of unit sizes
and answer generation.

e Too large: On the other hand, indexing entire books or

very large PDFs as a single unit pushes all the ranking With Vespa's chunk selection mechanism, you can model your entire
document as one while still chunking the content. This ensures only the

complexity inside a single document. Cross-document
most relevant parts of large documents are surfaced.

ranking becomes trivial, but intra-document relevance
becomes nearly impossible to solve efficiently.

© Vespa.ai Norway Al. Nov 2024 4

Best Practices for Large-Scale RAG Applications

Modeling Document Signals

Atter selecting your document unit, the next step is to Model your document units with embeddings, full text, and metadata

represent it in multiple ways. This ensures your system has the together. This combination delivers completeness (no signal gaps), flexibility
right signals to power accurate retrieval and ranking. (semantic, lexical, and business-rule use cases), and performance.

In practice, this means deciding how that piece of content is

stored and enriched inside your retrieval system. Each unit Aguiz

should carry different layers of information, so the search ggg:;chemca'cvc'es e Dooumont I 1011058/30536E007760

engine has everything it needs to surface the best results &MM.... Category Global biogeochemical cycles
quickly and accurately: , Goral Fes Garbonste ShematriFevesls

Title Interannual Seasonal and Spatial Impacts on
Ocean Acidification Off Florida

e Embeddings (semantic signals): Create one or more

. . . - Title Embedding 0.98 | 158 | 13.7 | 111 | 7.89 | 14.8
embeddings per document or section to capture semantic
. Authors Palacio-Castro | Enochs | Besemer | ...
meaning and enable similarity-based retrieval.
Publish Time 1701903600
e Full Text (lexical signals): Preserve the raw text for exact
Content Abstract. Ocean acidification (OA) threatens ..
keyword matches, phrase queries, and lexical scoring. -
e Structured Metadata (contextual signals): Add contextual a =TI R
attributes like category, author, or publish date. These not
only refine ranking but also allow filtering, faceting, and Figure 2: How Vespa stores document signals
drill-down exploration.
By combining semantic, lexical, and contextual signals, you give
your retrieval system the depth and flexibility it needs. This
multi-layered representation ensures that results are not just With Vespa, you can store all three: text, embeddings, and metadata,

directly in the schema. Vespa then handles retrieval and ranking natively,

relevant, but also precise, explainable, and aligned with your SrenanE
so you don't need to manage separate embedding pipelines.

business context. It lays the foundation for reliable ranking at
scale.

© Vespa.ai Norway Al. Nov 2024 o

Best Practices for Large-Scale RAG Applications

Defining a Retrieval Strategy

One of the most important design choices in a RAG system

Always include lexical signals in ranking. Even when embeddings are

addressed by The RAG Blueprint is deciding how queries will strong, keyword matches remain essential for grounding responses.
retrieve content: lexical search, vector search, or a hybrid of Tune your balance. Use vectors to maximize recall, then rely on lexical
both. features and ranking expressions to filter noise.

Adapt by domain. In highly specialized fields (life sciences, legal,

e-commerce), hybrid is essential. In broad consumer domains, you may
excellent for precision on IDs, names, or technical terms. But lean more on vectors, but don’t drop lexical entirely.

e Lexical only: Matches exact words and phrases, making it

It fails when relevant passages use different wording or

synonymes.

e Vector only: Uses embeddings to capture meaning, so it
can retrieve semantically similar passages even if no
keywords overlap. However, vectors often stumble on

domain-specific jargon or product names, as these are Lexical Hybrid Vector
often not in the training set. I
e Hybrid (recommended): Combines both approaches,
ensuring high recall from vectors and high precision from
lexical matches. This balance is especially important for Prefe:‘red

enterprise use cases where domain-specific language and
) Figure 3: Hybrid Venn Diagram
structured attributes matter.

This decision determines whether your RAG system retrieves

the right evidence for the LLM to reason over. Without the right

balance, you risk omitting essential details or missing nuanced Vespa natively unifies hybrid retrieval in a single engine. No external
re-rankers or duplicated indexes. Handle billions of documents and petabytes
of data with Vespa’'s millisecond-latency hybrid search

connections.

© Vespa.ai Norway Al. Nov 2024 6

Best Practices for Large-Scale RAG Applications

Organizing Queries for Scale

As applications grow, retrieval and ranking needs diversify.
Different use cases require different parameters, filters, and
ranking models.

If you try to manage all of this with raw parameters in every
request, complexity quickly spirals out of control. You end up
duplicating logic, introducing inconsistencies, and making
experimentation painful.

Query profiles solve this by acting as named, reusable
configurations. Instead of hardcoding dozens of parameters for
each request, you define a profile once and reference it
wherever it's needed.

A query profile bundles together:

e Query parameters (how many results to fetch, what filters
to apply)

e Ranking expressions (relevance scoring functions, learned
models)

e Filters and constraints (time range, access control, business
rules)

Query profiles allow your RAG application to grow in scale and
sophistication without becoming unmanageable. They make
retrieval strategies modular, maintainable, and adaptable so
you can support dozens of use cases while still evolving your
ranking models and business rules with minimal friction.

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

Define Profiles for Each Use Case: Examples include “semantic search,”
“hybrid search,” or “recommendations.”

Leverage Multi-Phase Ranking Inside Profiles: Each profile can specify
first-phase retrieval, second-phase reranking, and global ranking separately.

Iterate Safely: You can test new ranking models by switching profiles in
controlled rollouts, rather than changing client code.

Raw Parameters Query Profiles
Parameter
Parameter A Parameter USG Case
Query |
N a4 Use Case
Query |
LA Use Case
Query |
Parameter Parameter Query Profile

Figure 4: Raw parameters vs. query profiles

In Vespa, query profiles are built into the engine. They can inherit from each
other to reduce duplication and bundle parameters, ranking expressions,

filters, and models into one reusable configuration. Unlike other platforms that
need duplicated configs or custom middleware, Vespa handles it natively.

Best Practices for Large-Scale RAG Applications

Optimizing Recall with Binary Vectors

When a query runs, the system’s first job isn’t to find the single
best answer. It's to gather a candidate set of potentially
relevant documents. This is recall: how effectively the system
casts a wide enough net to ensure that the truly relevant items
are included in the pool.

In RAG, recall is critical because an LLM can only generate
answers from the context it receives. If relevant documents are
missed in the first-stage recall, no amount of reranking or LLM
reasoning can bring them back. Strong recall improves answer
completeness and directly reduces hallucinations.

Optimizing recall means gathering good-enough coverage at
low cost, then letting later phases (re-rankers, ranking models,
and the LLM) refine for precision. The goal isn't perfect
accuracy up front, but efficient breadth: high coverage without
paying for expensive full-precision vector math across billions
of documents.

Recall Candidate Second-Phase Ranked
Phase Selection Ranking Results
00010010 l Ranking Model +“—
00101010 l
10000010 :
00101001 |)
Binary Dense
Vectors Vectors

Figure 5: Recall with binary vectors

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

Use binary vectors for recall. They're fast, memory-light, and cheap,
making them ideal for broad candidate gathering.

Re-rank with full precision. Apply dense vectors, hybrid lexical +
semantic features, and business logic to the smaller candidate set for
accuracy.

Balance recall depth and cost. Too shallow, and you miss context; too
deep, and you waste compute. Vespa lets you tune this tradeoff directly in
your schema and ranking expressions.

Vespa lets you store both binary and dense embeddings in the same
schema and use them in different ranking phases.

You can run cheap recall with binary vectors, then seamlessly pass
candidates into a dense vector reranker or a hybrid ranking expression, all
inside Vespa, no external systems needed.

Best Practices for Large-Scale RAG Applications

Designing Fields: Titles, Bodies, & Embeddings

Field design is about structuring your content into meaningful
parts so the retrieval system can treat them differently. It's
about deciding what counts as a separate “field” (titles, bodies,
metadata, and embeddings) in your schema and how those
fields are weighted or modeled for search and ranking.

In domains where a title conveys key meaning (scientific
papers, product listings, legal cases), field design strongly
boosts retrieval quality.

While multiple fields improve control, they also increase
complexity and resource usage. Done right, it improves

relevance without inflating cost.

AN

Title e i Title
| | Body
Body) Embedding
. > Embeddings

— Metadata —

Figure 6: Field design

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

For textual fields: it's almost always worth splitting data into meaningful
fields (e.g. title vs. body). Matches in titles should carry more weight than
matches buried deep in the body.

For embeddings: the trade-off is trickier. Splitting embeddings by field
(title embedding + body embedding) doubles cost and benefits are
smaller compared to text fields. Use separate embeddings only if the
field-level semantic differences are critical.

Leverage Vespa’'s schema flexibility: Vespa lets you store both lexical fields
and embeddings side by side, apply different weights, and combine them
in ranking without external preprocessing.

Best Practices for Large-Scale RAG Applications

Combining Signals
Effective ranking requires more than just embeddings or

keyword matches. It depends on combining multiple signals
that reflect both semantic meaning and real-world context.

Metadata and additional signals play a critical role in ensuring
that the most relevant, reliable, and useful results rise to the
top. Attributes such as author, publish date, category, or region
help the system distinguish between documents that might
look similar in content but serve very different purposes. It also
enables precise filtering and faceting, allowing users to drill
down into exactly the subset of results they need.

Additional signals further refine ranking by capturing real-world
usage and quality indicators. These might include user
engagement, click-through rates, freshness, or popularity.

Signals help disambiguate when multiple results seem equally
relevant in text or vector space, ensuring the system surfaces
the items that are not only similar but also useful.

Embeddings —

Text Relevance —— .
Final

— Ranking —— Score

Metadata —]

Other Signals —

Figure 7: Ranking Signals

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

10

Write signals directly into your documents: Many systems use a separate
“feature store” and only apply signals at the final re-ranking stage, but this
restricts their influence to the top-k documents.

Model Metadata as First-Class Fields: Always include structured attributes
like category, author, date, product type, or jurisdiction in your schema.

Boost by Field Importance: Weight fields differently based on how users
interpret them. For example, a match in the title should carry more influence
than one buried deep in the body, while publish date can be used to boost
recency.

Use metadata to encode domain-specific priorities: In commerce,
promote in-stock or higher-margin products; in life sciences, prioritize
peer-reviewed research.

Include signals in your ranking formula: These real-world signals help
disambiguate between equally relevant results and align ranking with user
value.

Don’t rely on metadata or signals in isolation: The best results come from
blending embeddings, text relevance, and metadata features into a unified
scoring model.

In Vespa, all data types, including text, vectors, metadata, and behavioral
signals, can be stored, retrieved, and ranked together inside the same engine.

Best Practices for Large-Scale RAG Applications

Ranking with Machine Learning

Strong ranking depends on combining multiple signals into a
scoring function that can separate the truly relevant results
from the noise. These signals include vector similarity, lexical
matching scores, metadata features, behavioral signals, and
sometimes hand-crafted rules such as recency or authority
boosts. On their own, each signal has limitations, but together,
they provide a rich, multi-dimensional picture of relevance.

At the core of this process are ranking models: algorithms that
learn or encode how to weight and combine different features.

Ranking is not static and different use cases require different
trade-offs. For this reason, teams often deploy multiple ranking
models simultaneously, switching between them based on use
case, audience, or A/B testing requirements.

Vector Lexical
Similarity Scoring |
Metadata Behaworal ‘
Signals

Figure 8: Ranking model example

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

11

Don’t rely on vectors alone. Blend multiple features: combine lexical,
semantic, metadata, and behavioral signals.

A reliable default is Gradient Boosted Decision Trees (GBDTs). They
provide a fast, reliable baseline that balances accuracy and cost.

Layer your ranking. Use cheap models for recall, then apply heavier models
(transformers, neural re-rankers) in later stages where precision matters
most.

Run multiple models in parallel. Different use cases benefit from different
ranking strategies. Keep them side by side for flexibility.

Leverage ranking profiles. In Vespa, profiles let you define, tune, and switch
between models natively, simplifying experimentation and deployment.

Vespa's ranking framework is fully extensible. You can embed GBDTs, neural
models, hand-crafted rules, and hybrid signals into the same query pipeline
SO you can iterate on relevance continuously, without bottlenecks from
external systems.

In practice, you'll often deploy multiple models simultaneously, for different
use cases or to A/B test generations. Vespa lets you switch between ranking
profiles seamlessly at query time.

Best Practices for Large-Scale RAG Applications

Ranking in Multiple Phases

In modern retrieval systems, true ranking is machine-learned:
models that combine multiple signals to generate a rich,
context-aware measure of relevance. This is what makes
results feel precise, personalized, and aligned with business
needs.

But there's a catch: applying these ranking models directly to
billions of documents simply doesn’t scale. Running full
Inference across every possible candidate would blow through
compute budgets and create unacceptable latency for end
users. Even with efficient hardware, the cost of evaluating deep
ranking models at web or enterprise scale is prohibitive.

This tension creates the classic ranking bottleneck: the most
accurate models are also the most computationally expensive.
Left unchecked, they slow down systems, inflate costs, and
limit the size of candidate pools you can reasonably consider.

That's why retrieval architectures should rely on multi-phase
ranking: using lightweight functions to narrow down the
candidate set, and only then applying more expensive,
machine-learned models on the top-k results.

By layering ranking in this way, systems achieve the best of
both worlds: scalable retrieval across billions of items,
combined with high-precision results where it matters most.

© Vespa.ai Norway Al. Nov 2024

Best Practices from The RAG Blueprint

Use a multi-phase ranking strategy:

e First phase: Use a lightweight function (lexical score, approximate
vector similarity, or both) to reduce the candidate pool.

e Second phase: Apply machine-learned ranking on the top-k results
(e.g., 100-1000).

e Chunk selection: For large documents, add a third layer: rank chunks
within retrieved documents to pass only the most relevant spans to
the LLM.

Phase 1: Lightweight Ranking

Phase 2: Machine-Learned Ranking

Phase 3: Chunk Selection

¥

C LLM Input) Figure 9: Phased ranking

Vespa integrates all three phases natively. Lightweight retrieval,
machine-learned ranking, and chunk-level scoring can be defined in a single
query pipeline and executed at scale

12

Document name here

Conclusion

© Vespa.ai Norway Al. Nov 2024

Building scalable, high-quality RAG applications requires more than

just “vector search.” It's about:

Choosing the right retrieval unit

Combining lexical and vector signals

Using binary vectors to control costs

Organizing queries for maintainability

Embedding metadata and signals directly in documents
Applying multiphase ranking with chunk selection

Vespa provides a unified platform for all of these capabillities,

retrieval, ranking, chunking, and serving models at scale, without the

brittle handoffs between external systems.

If you're moving beyond prototypes and need RAG that actually

scales, these practices can help you build applications that are both

cost-efficient and accurate.

Go from theory to production with The RAG Blueprint.

13

https://vespa.ai/solutions/enterprise-retrieval-augmented-generation/the-rag-blueprint/

Customer Case Studies

Perplexity

Perplexity, one of the fastest-growing
Al-powered answer engines, relies on Vespa.ai
to power retrieval at massive scale.

Vespa serves as the backbone of Perplexity’s
RAG pipeline, handling billions of documents
and over 100 million weekly queries with low
latency.

By combining vector similarity, lexical matching,
metadata, and custom ranking functions in one
platform, Vespa ensures that Perplexity
retrieves the most accurate, context-rich
passages for its large language models. This
allows Perplexity to deliver fast, precise, and
trustworthy answers to millions of users
worldwide—all without compromising on scale,
speed, or cost efficiency.

Learn More

R perplexity

© Vespa.ai Norway Al. Nov 2024

Onyx

Onyx.app, the open-source enterprise search
and knowledge assistant, uses Vespa.ai to deliver
scalable, cost-efficient retrieval for corporate
data.

Onyx leverages Vespa's hybrid retrieval,
combining vectors, text, and structured
metadata, along with Vespa Cloud'’s autoscaling
and resource suggestions to keep operations
efficient.

The result is a robust enterprise RAG platform
that can index millions of internal documents,
respect access controls, and surface the most
relevant information instantly for business users.

Learn More

.4 ONyX

14

Bigdata.com

BigData.com, a leading market intelligence
platform, relies on Vespa.ai to deliver real-time
search and insights across vast collections of
financial and business data.

Vespa serves as the foundation of their retrieval
layer, combining vector similarity, lexical
matching, and structured filters to surface the
most relevant results instantly.

By running retrieval and ranking in-cluster at
scale, Vespa ensures that BigData.com provides
analysts and decision-makers with fast,
accurate, and cost-efficient access to billions of
data points.

Learn More

bigdatA.cor

https://vespa.ai/perplexity/
https://blog.vespa.ai/using-vespa-cloud-resource-suggestions-to-optimize-costs/?_gl=1*ms0vmf*_gcl_au*MTcxODg1NjI4LjE3NTc1MDkwMzA.
https://vespa.ai/ravenpack-launches-bigdata-com-with-vespa-ai-to-revolutionize-billion-scale-vector-search-for-financial-research/

About Vespa.al

Vespa.al Is a platform for building and running real-time Al-driven
applications for search, recommendation, personalization, and RAG. It
enables enterprise-wide Al deployment by efficiently managing data,
inference, and logic, handling large data volumes and over 100K
queries per second. Vespa supports precise hybrid search across
vectors, text, and structured metadata. Available as both a managed
service and open source, it's trusted by organizations like Spotify,
Vinted, Wix, and Yahoo. The platform offers robust APIs, SDKs for
Integration, comprehensive monitoring metrics, and customizable
features for optimized performance.

Interested to learn more? We have many different resources and
iInformation available through our social platforms

GitHub Twitter LinkedIn YouTube

VeSpa.ai Vespa.ai Norway Al. Nov 2024

https://github.com/vespa-engine
https://x.com/vespaengine?lang=nb&mx=2
https://www.linkedin.com/company/vespa-ai/posts/?feedView=all
https://www.youtube.com/channel/UCVXw_f6UHff8-V9FA1LMIiw

