
© Vespa.ai Norway AI. Nov 2024We Make AI Work

Best Practices for Large-Scale
RAG Applications
Guided by The RAG Blueprint

1

↗ All contents contain linked titles.

© Vespa.ai Norway AI. Nov 2024

↗ Introduction 3

↗ Choosing the Right Document Unit 4

↗ Modeling Document Signals 5

↗ Defining a Retrieval Strategy 6

↗ Organizing Queries for Scale 7

↗ Optimizing Recall with Binary Vectors 8

↗ Designing Fields 9

↗ Combining Signals 10

↗ Ranking with Machine Learning 11

↗ Ranking in Multiple Phases 12

↗ Conclusion 13

↗ Customer Case Studies 14

Vespa.ai Contents

Vespa.ai is an AI Search Platform for developing and

operating large-scale applications that combine big data,

vector search, machine-learned ranking, and real-time

inference. With native tensor support for complex ranking

and decisioning, Vespa enables real-time AI applications

like RAG, recommendation, and intelligent search—at

enterprise scale.

2

© Vespa.ai Norway AI. Nov 2024

As Retrieval-Augmented Generation (RAG) systems scale, the same
architectural challenges continue to surface:

● What’s the right size for your searchable unit?
● Should you rely on keywords, vectors, or both?
● How do you keep costs under control as the system scales?
● And how do you make ranking accurate and efficient?

We’ve seen these issues firsthand while working with teams like
Perplexity, and that’s why we created The RAG Blueprint. It’s a
practical playbook that walks you step-by-step through each stage
of system design, helping teams build more accurate, cost-efficient,
and production-ready applications.

This ebook distills the highlights from the Blueprint, so you can learn
the best practices even if you’re not actively building today.

You’ll gain a clearer understanding of what it takes to make RAG
accurate, scalable, and cost-efficient, including pro tips on how
Vespa makes it possible.

Introduction

Best Practices for Large-Scale RAG Applications

3

© Vespa.ai Norway AI. Nov 2024

One of the first decisions in any RAG system is choosing the

right unit of retrieval, because everything else in the pipeline

including retrieval accuracy, ranking quality, cost efficiency,

and LLM answer quality depends on this choice.

The document unit (sometimes called the searchable unit)

means the size and boundaries of the chunk of text that you

index and retrieve. It’s the atomic piece of content that your

search engine retrieves and returns when a user query comes

in. It could be a page, a paragraph, or even a sentence.

The RAG Blueprint guides you through this choice because it

has a direct impact on retrieval accuracy, context, and

efficiency depending on the size you choose:

● Too small: Early approaches often chunked documents

into very small pieces (e.g., a paragraph per chunk). While

this maximized the chance of catching relevant text, it

sacrificed context. You’d retrieve fragments that lacked

the surrounding information needed for accurate ranking

and answer generation.

● Too large: On the other hand, indexing entire books or

very large PDFs as a single unit pushes all the ranking

complexity inside a single document. Cross-document

ranking becomes trivial, but intra-document relevance

becomes nearly impossible to solve efficiently.

Best Practices for Large-Scale RAG Applications

Choosing the Right Searchable Unit

Aim for a unit size that balances context with retrievability.

For example:

● Larger paragraphs, or a few paragraphs combined, tend to work well
for chunks.

● When in doubt, err toward larger units rather than smaller ones.
Modern models are getting better at handling larger contexts.

Best Practices from The RAG Blueprint

With Vespa’s chunk selection mechanism, you can model your entire
document as one while still chunking the content. This ensures only the
most relevant parts of large documents are surfaced.

Pro-Tip in Vespa

Figure 1: Example of unit sizes

4

© Vespa.ai Norway AI. Nov 2024

After selecting your document unit, the next step is to

represent it in multiple ways. This ensures your system has the

right signals to power accurate retrieval and ranking.

In practice, this means deciding how that piece of content is

stored and enriched inside your retrieval system. Each unit

should carry different layers of information, so the search

engine has everything it needs to surface the best results

quickly and accurately:

● Embeddings (semantic signals): Create one or more

embeddings per document or section to capture semantic

meaning and enable similarity-based retrieval.

● Full Text (lexical signals): Preserve the raw text for exact

keyword matches, phrase queries, and lexical scoring.

● Structured Metadata (contextual signals): Add contextual

attributes like category, author, or publish date. These not

only refine ranking but also allow filtering, faceting, and

drill-down exploration.

By combining semantic, lexical, and contextual signals, you give

your retrieval system the depth and flexibility it needs. This

multi-layered representation ensures that results are not just

relevant, but also precise, explainable, and aligned with your

business context. It lays the foundation for reliable ranking at

scale.

Modeling Document Signals

Model your document units with embeddings, full text, and metadata
together. This combination delivers completeness (no signal gaps), flexibility
(semantic, lexical, and business-rule use cases), and performance.

Best Practices from The RAG Blueprint

With Vespa, you can store all three: text, embeddings, and metadata,
directly in the schema. Vespa then handles retrieval and ranking natively,
so you don’t need to manage separate embedding pipelines.

Pro-Tip in Vespa

Figure 2: How Vespa stores document signals

Best Practices for Large-Scale RAG Applications

5

© Vespa.ai Norway AI. Nov 2024

One of the most important design choices in a RAG system

addressed by The RAG Blueprint is deciding how queries will

retrieve content: lexical search, vector search, or a hybrid of

both.

● Lexical only: Matches exact words and phrases, making it

excellent for precision on IDs, names, or technical terms. But

it fails when relevant passages use different wording or

synonyms.

● Vector only: Uses embeddings to capture meaning, so it

can retrieve semantically similar passages even if no

keywords overlap. However, vectors often stumble on

domain-specific jargon or product names, as these are

often not in the training set.

● Hybrid (recommended): Combines both approaches,

ensuring high recall from vectors and high precision from

lexical matches. This balance is especially important for

enterprise use cases where domain-specific language and

structured attributes matter.

This decision determines whether your RAG system retrieves

the right evidence for the LLM to reason over. Without the right

balance, you risk omitting essential details or missing nuanced

connections.

Defining a Retrieval Strategy

Always include lexical signals in ranking. Even when embeddings are
strong, keyword matches remain essential for grounding responses.

Tune your balance. Use vectors to maximize recall, then rely on lexical
features and ranking expressions to filter noise.

Adapt by domain. In highly specialized fields (life sciences, legal,
e-commerce), hybrid is essential. In broad consumer domains, you may
lean more on vectors, but don’t drop lexical entirely.

Best Practices from The RAG Blueprint

Vespa natively unifies hybrid retrieval in a single engine. No external
re-rankers or duplicated indexes. Handle billions of documents and petabytes
of data with Vespa’s millisecond-latency hybrid search

Pro-Tip in Vespa

Figure 3: Hybrid Venn Diagram

Preferred

Best Practices for Large-Scale RAG Applications

6

© Vespa.ai Norway AI. Nov 2024

As applications grow, retrieval and ranking needs diversify.

Different use cases require different parameters, filters, and

ranking models.

If you try to manage all of this with raw parameters in every

request, complexity quickly spirals out of control. You end up

duplicating logic, introducing inconsistencies, and making

experimentation painful.

Query profiles solve this by acting as named, reusable

configurations. Instead of hardcoding dozens of parameters for

each request, you define a profile once and reference it

wherever it’s needed.

A query profile bundles together:

● Query parameters (how many results to fetch, what filters

to apply)

● Ranking expressions (relevance scoring functions, learned

models)

● Filters and constraints (time range, access control, business

rules)

Query profiles allow your RAG application to grow in scale and

sophistication without becoming unmanageable. They make

retrieval strategies modular, maintainable, and adaptable so

you can support dozens of use cases while still evolving your

ranking models and business rules with minimal friction.

Organizing Queries for Scale

Define Profiles for Each Use Case: Examples include “semantic search,”
“hybrid search,” or “recommendations.”

Leverage Multi-Phase Ranking Inside Profiles: Each profile can specify
first-phase retrieval, second-phase reranking, and global ranking separately.

Iterate Safely: You can test new ranking models by switching profiles in
controlled rollouts, rather than changing client code.

Best Practices from The RAG Blueprint

In Vespa, query profiles are built into the engine. They can inherit from each
other to reduce duplication and bundle parameters, ranking expressions,
filters, and models into one reusable configuration. Unlike other platforms that
need duplicated configs or custom middleware, Vespa handles it natively.

Pro-Tip in Vespa

Figure 4: Raw parameters vs. query profiles

Best Practices for Large-Scale RAG Applications

7

© Vespa.ai Norway AI. Nov 2024

When a query runs, the system’s first job isn’t to find the single

best answer. It’s to gather a candidate set of potentially

relevant documents. This is recall: how effectively the system

casts a wide enough net to ensure that the truly relevant items

are included in the pool.

In RAG, recall is critical because an LLM can only generate

answers from the context it receives. If relevant documents are

missed in the first-stage recall, no amount of reranking or LLM

reasoning can bring them back. Strong recall improves answer

completeness and directly reduces hallucinations.

Optimizing recall means gathering good-enough coverage at

low cost, then letting later phases (re-rankers, ranking models,

and the LLM) refine for precision. The goal isn’t perfect

accuracy up front, but efficient breadth: high coverage without

paying for expensive full-precision vector math across billions

of documents.

Optimizing Recall with Binary Vectors

Use binary vectors for recall. They’re fast, memory-light, and cheap,
making them ideal for broad candidate gathering.

Re-rank with full precision. Apply dense vectors, hybrid lexical +
semantic features, and business logic to the smaller candidate set for
accuracy.

Balance recall depth and cost. Too shallow, and you miss context; too
deep, and you waste compute. Vespa lets you tune this tradeoff directly in
your schema and ranking expressions.

Best Practices from The RAG Blueprint

Vespa lets you store both binary and dense embeddings in the same
schema and use them in different ranking phases.

You can run cheap recall with binary vectors, then seamlessly pass
candidates into a dense vector reranker or a hybrid ranking expression, all
inside Vespa, no external systems needed.

Pro-Tip in Vespa

Figure 5: Recall with binary vectors

Best Practices for Large-Scale RAG Applications

8

© Vespa.ai Norway AI. Nov 2024

Field design is about structuring your content into meaningful

parts so the retrieval system can treat them differently. It’s

about deciding what counts as a separate “field” (titles, bodies,

metadata, and embeddings) in your schema and how those

fields are weighted or modeled for search and ranking.

In domains where a title conveys key meaning (scientific

papers, product listings, legal cases), field design strongly

boosts retrieval quality.

While multiple fields improve control, they also increase

complexity and resource usage. Done right, it improves

relevance without inflating cost.

Designing Fields: Titles, Bodies, & Embeddings

For textual fields: it’s almost always worth splitting data into meaningful
fields (e.g., title vs. body). Matches in titles should carry more weight than
matches buried deep in the body.

For embeddings: the trade-off is trickier. Splitting embeddings by field
(title embedding + body embedding) doubles cost and benefits are
smaller compared to text fields. Use separate embeddings only if the
field-level semantic differences are critical.

Best Practices from The RAG Blueprint

Leverage Vespa’s schema flexibility: Vespa lets you store both lexical fields
and embeddings side by side, apply different weights, and combine them
in ranking without external preprocessing.

Pro-Tip in Vespa

Figure 6: Field design

Best Practices for Large-Scale RAG Applications

9

© Vespa.ai Norway AI. Nov 2024

Effective ranking requires more than just embeddings or

keyword matches. It depends on combining multiple signals

that reflect both semantic meaning and real-world context.

Metadata and additional signals play a critical role in ensuring

that the most relevant, reliable, and useful results rise to the

top. Attributes such as author, publish date, category, or region

help the system distinguish between documents that might

look similar in content but serve very different purposes. It also

enables precise filtering and faceting, allowing users to drill

down into exactly the subset of results they need.

Additional signals further refine ranking by capturing real-world

usage and quality indicators. These might include user

engagement, click-through rates, freshness, or popularity.

Signals help disambiguate when multiple results seem equally

relevant in text or vector space, ensuring the system surfaces

the items that are not only similar but also useful.

Combining Signals

Write signals directly into your documents: Many systems use a separate
“feature store” and only apply signals at the final re-ranking stage, but this
restricts their influence to the top-k documents.

Model Metadata as First-Class Fields: Always include structured attributes
like category, author, date, product type, or jurisdiction in your schema.

Boost by Field Importance: Weight fields differently based on how users
interpret them. For example, a match in the title should carry more influence
than one buried deep in the body, while publish date can be used to boost
recency.

Use metadata to encode domain-specific priorities: In commerce,
promote in-stock or higher-margin products; in life sciences, prioritize
peer-reviewed research.

Include signals in your ranking formula: These real-world signals help
disambiguate between equally relevant results and align ranking with user
value.

Don’t rely on metadata or signals in isolation: The best results come from
blending embeddings, text relevance, and metadata features into a unified
scoring model.

Best Practices from The RAG Blueprint

In Vespa, all data types, including text, vectors, metadata, and behavioral
signals, can be stored, retrieved, and ranked together inside the same engine.

Pro-Tip in Vespa

Embeddings

Text Relevance

Metadata

Other Signals

Ranking Final
Score

Figure 7: Ranking Signals

Best Practices for Large-Scale RAG Applications

10

© Vespa.ai Norway AI. Nov 2024

Strong ranking depends on combining multiple signals into a

scoring function that can separate the truly relevant results

from the noise. These signals include vector similarity, lexical

matching scores, metadata features, behavioral signals, and

sometimes hand-crafted rules such as recency or authority

boosts. On their own, each signal has limitations, but together,

they provide a rich, multi-dimensional picture of relevance.

At the core of this process are ranking models: algorithms that

learn or encode how to weight and combine different features.

Ranking is not static and different use cases require different

trade-offs. For this reason, teams often deploy multiple ranking

models simultaneously, switching between them based on use

case, audience, or A/B testing requirements.

Ranking with Machine Learning

Don’t rely on vectors alone. Blend multiple features: combine lexical,
semantic, metadata, and behavioral signals.

A reliable default is Gradient Boosted Decision Trees (GBDTs). They
provide a fast, reliable baseline that balances accuracy and cost.

Layer your ranking. Use cheap models for recall, then apply heavier models
(transformers, neural re-rankers) in later stages where precision matters
most.

Run multiple models in parallel. Different use cases benefit from different
ranking strategies. Keep them side by side for flexibility.

Leverage ranking profiles. In Vespa, profiles let you define, tune, and switch
between models natively, simplifying experimentation and deployment.

Best Practices from The RAG Blueprint

Vespa’s ranking framework is fully extensible. You can embed GBDTs, neural
models, hand-crafted rules, and hybrid signals into the same query pipeline
so you can iterate on relevance continuously, without bottlenecks from
external systems.

In practice, you’ll often deploy multiple models simultaneously, for different
use cases or to A/B test generations. Vespa lets you switch between ranking
profiles seamlessly at query time.

Pro-Tip in Vespa

Figure 8: Ranking model example

Vector
Similarity

Metadata

Lexical
Scoring

Behavioral
Signals

ƒ

Best Practices for Large-Scale RAG Applications

11

© Vespa.ai Norway AI. Nov 2024

In modern retrieval systems, true ranking is machine-learned:

models that combine multiple signals to generate a rich,

context-aware measure of relevance. This is what makes

results feel precise, personalized, and aligned with business

needs.

But there’s a catch: applying these ranking models directly to

billions of documents simply doesn’t scale. Running full

inference across every possible candidate would blow through

compute budgets and create unacceptable latency for end

users. Even with efficient hardware, the cost of evaluating deep

ranking models at web or enterprise scale is prohibitive.

This tension creates the classic ranking bottleneck: the most

accurate models are also the most computationally expensive.

Left unchecked, they slow down systems, inflate costs, and

limit the size of candidate pools you can reasonably consider.

That’s why retrieval architectures should rely on multi-phase

ranking: using lightweight functions to narrow down the

candidate set, and only then applying more expensive,

machine-learned models on the top-k results.

By layering ranking in this way, systems achieve the best of

both worlds: scalable retrieval across billions of items,

combined with high-precision results where it matters most.

Ranking in Multiple Phases

Use a multi-phase ranking strategy:

● First phase: Use a lightweight function (lexical score, approximate
vector similarity, or both) to reduce the candidate pool.

● Second phase: Apply machine-learned ranking on the top-k results
(e.g., 100–1000).

● Chunk selection: For large documents, add a third layer: rank chunks
within retrieved documents to pass only the most relevant spans to
the LLM.

Best Practices from The RAG Blueprint

Vespa integrates all three phases natively. Lightweight retrieval,
machine-learned ranking, and chunk-level scoring can be defined in a single
query pipeline and executed at scale

Pro-Tip in Vespa

Figure 9: Phased ranking

Best Practices for Large-Scale RAG Applications

12

© Vespa.ai Norway AI. Nov 2024

Building scalable, high-quality RAG applications requires more than

just “vector search.” It’s about:

● Choosing the right retrieval unit

● Combining lexical and vector signals

● Using binary vectors to control costs

● Organizing queries for maintainability

● Embedding metadata and signals directly in documents

● Applying multiphase ranking with chunk selection

Vespa provides a unified platform for all of these capabilities,

retrieval, ranking, chunking, and serving models at scale, without the

brittle handoffs between external systems.

If you’re moving beyond prototypes and need RAG that actually

scales, these practices can help you build applications that are both

cost-efficient and accurate.

Go from theory to production with The RAG Blueprint.

Conclusion

Document name here

13

https://vespa.ai/solutions/enterprise-retrieval-augmented-generation/the-rag-blueprint/

© Vespa.ai Norway AI. Nov 2024

Customer Case Studies

Perplexity, one of the fastest-growing

AI-powered answer engines, relies on Vespa.ai

to power retrieval at massive scale.

Vespa serves as the backbone of Perplexity’s

RAG pipeline, handling billions of documents

and over 100 million weekly queries with low

latency.

By combining vector similarity, lexical matching,

metadata, and custom ranking functions in one

platform, Vespa ensures that Perplexity

retrieves the most accurate, context-rich

passages for its large language models. This

allows Perplexity to deliver fast, precise, and

trustworthy answers to millions of users

worldwide—all without compromising on scale,

speed, or cost efficiency.

Learn More

Onyx.app, the open-source enterprise search

and knowledge assistant, uses Vespa.ai to deliver

scalable, cost-efficient retrieval for corporate

data.

Onyx leverages Vespa’s hybrid retrieval,

combining vectors, text, and structured

metadata, along with Vespa Cloud’s autoscaling

and resource suggestions to keep operations

efficient.

The result is a robust enterprise RAG platform

that can index millions of internal documents,

respect access controls, and surface the most

relevant information instantly for business users.

Learn More

BigData.com, a leading market intelligence

platform, relies on Vespa.ai to deliver real-time

search and insights across vast collections of

financial and business data.

Vespa serves as the foundation of their retrieval

layer, combining vector similarity, lexical

matching, and structured filters to surface the

most relevant results instantly.

By running retrieval and ranking in-cluster at

scale, Vespa ensures that BigData.com provides

analysts and decision-makers with fast,

accurate, and cost-efficient access to billions of

data points.

Learn More

Bigdata.comOnyxPerplexity

14

https://vespa.ai/perplexity/
https://blog.vespa.ai/using-vespa-cloud-resource-suggestions-to-optimize-costs/?_gl=1*ms0vmf*_gcl_au*MTcxODg1NjI4LjE3NTc1MDkwMzA.
https://vespa.ai/ravenpack-launches-bigdata-com-with-vespa-ai-to-revolutionize-billion-scale-vector-search-for-financial-research/

Interested to learn more? We have many different resources and
information available through our social platforms

About Vespa.ai
Vespa.ai is a platform for building and running real-time AI-driven

applications for search, recommendation, personalization, and RAG. It

enables enterprise-wide AI deployment by efficiently managing data,

inference, and logic, handling large data volumes and over 100K

queries per second. Vespa supports precise hybrid search across

vectors, text, and structured metadata. Available as both a managed

service and open source, it's trusted by organizations like Spotify,

Vinted, Wix, and Yahoo. The platform offers robust APIs, SDKs for

integration, comprehensive monitoring metrics, and customizable

features for optimized performance.

GitHub Twitter LinkedIn YouTube

© Vespa.ai Norway AI. Nov 2024

15

https://github.com/vespa-engine
https://x.com/vespaengine?lang=nb&mx=2
https://www.linkedin.com/company/vespa-ai/posts/?feedView=all
https://www.youtube.com/channel/UCVXw_f6UHff8-V9FA1LMIiw

