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Vespa.ai Contents

Vespa.ai is an AI Search Platform for developing and 

operating large-scale applications that combine big data, 

vector search, machine-learned ranking, and real-time 

inference. With native tensor support for complex ranking 

and decisioning, Vespa enables real-time AI applications 

like RAG, recommendation, and intelligent search—at 

enterprise scale.
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As Retrieval-Augmented Generation (RAG) systems scale, the same 
architectural challenges continue to surface:

● What’s the right size for your searchable unit?
● Should you rely on keywords, vectors, or both?
● How do you keep costs under control as the system scales?
● And how do you make ranking accurate and efficient?

We’ve seen these issues firsthand while working with teams like 
Perplexity, and that’s why we created The RAG Blueprint. It’s a 
practical playbook that walks you step-by-step through each stage 
of system design, helping teams build more accurate, cost-efficient, 
and production-ready applications.

This ebook distills the highlights from the Blueprint, so you can learn 
the best practices even if you’re not actively building today. 

You’ll gain a clearer understanding of what it takes to make RAG 
accurate, scalable, and cost-efficient, including pro tips on how 
Vespa makes it possible.

Introduction

Best Practices for Large-Scale RAG Applications
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One of the first decisions in any RAG system is choosing the 

right unit of retrieval, because everything else in the pipeline 

including retrieval accuracy, ranking quality, cost efficiency, 

and LLM answer quality depends on this choice. 

The document unit (sometimes called the searchable unit) 

means the size and boundaries of the chunk of text that you 

index and retrieve. It’s the atomic piece of content that your 

search engine retrieves and returns when a user query comes 

in. It could be a page, a paragraph, or even a sentence. 

The RAG Blueprint guides you through this choice because it 

has a direct impact on retrieval accuracy, context, and 

efficiency depending on the size you choose:

● Too small: Early approaches often chunked documents 

into very small pieces (e.g., a paragraph per chunk). While 

this maximized the chance of catching relevant text, it 

sacrificed context. You’d retrieve fragments that lacked 

the surrounding information needed for accurate ranking 

and answer generation.

● Too large: On the other hand, indexing entire books or 

very large PDFs as a single unit pushes all the ranking 

complexity inside a single document. Cross-document 

ranking becomes trivial, but intra-document relevance 

becomes nearly impossible to solve efficiently.

Best Practices for Large-Scale RAG Applications

Choosing the Right Searchable Unit

Aim for a unit size that balances context with retrievability. 

For example:

● Larger paragraphs, or a few paragraphs combined, tend to work well 
for chunks.

● When in doubt, err toward larger units rather than smaller ones. 
Modern models are getting better at handling larger contexts.

Best Practices from The RAG Blueprint

With Vespa’s chunk selection mechanism, you can model your entire 
document as one while still chunking the content. This ensures only the 
most relevant parts of large documents are surfaced. 

Pro-Tip in Vespa

Figure 1: Example of unit sizes
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After selecting your document unit, the next step is to 

represent it in multiple ways. This ensures your system has the 

right signals to power accurate retrieval and ranking.

In practice, this means deciding how that piece of content is 

stored and enriched inside your retrieval system. Each unit 

should carry different layers of information, so the search 

engine has everything it needs to surface the best results 

quickly and accurately:

● Embeddings (semantic signals): Create one or more 

embeddings per document or section to capture semantic 

meaning and enable similarity-based retrieval.

● Full Text (lexical signals): Preserve the raw text for exact 

keyword matches, phrase queries, and lexical scoring.

● Structured Metadata (contextual signals): Add contextual 

attributes like category, author, or publish date. These not 

only refine ranking but also allow filtering, faceting, and 

drill-down exploration.

By combining semantic, lexical, and contextual signals, you give 

your retrieval system the depth and flexibility it needs. This 

multi-layered representation ensures that results are not just 

relevant, but also precise, explainable, and aligned with your 

business context. It lays the foundation for reliable ranking at 

scale.

Modeling Document Signals

Model your document units with embeddings, full text, and metadata 
together. This combination delivers completeness (no signal gaps), flexibility 
(semantic, lexical, and business-rule use cases), and performance.

Best Practices from The RAG Blueprint

With Vespa, you can store all three: text, embeddings, and metadata, 
directly in the schema. Vespa then handles retrieval and ranking natively, 
so you don’t need to manage separate embedding pipelines.

Pro-Tip in Vespa

Figure 2: How Vespa stores document signals

Best Practices for Large-Scale RAG Applications
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One of the most important design choices in a RAG system 

addressed by The RAG Blueprint is deciding how queries will 

retrieve content: lexical search, vector search, or a hybrid of 

both.

● Lexical only: Matches exact words and phrases, making it 

excellent for precision on IDs, names, or technical terms. But 

it fails when relevant passages use different wording or 

synonyms.

● Vector only: Uses embeddings to capture meaning, so it 

can retrieve semantically similar passages even if no 

keywords overlap. However, vectors often stumble on 

domain-specific jargon or product names, as these are 

often not in the training set.

● Hybrid (recommended): Combines both approaches, 

ensuring high recall from vectors and high precision from 

lexical matches. This balance is especially important for 

enterprise use cases where domain-specific language and 

structured attributes matter.

This decision determines whether your RAG system retrieves 

the right evidence for the LLM to reason over. Without the right 

balance, you risk omitting essential details or missing nuanced 

connections.

Defining a Retrieval Strategy

Always include lexical signals in ranking. Even when embeddings are 
strong, keyword matches remain essential for grounding responses.

Tune your balance. Use vectors to maximize recall, then rely on lexical 
features and ranking expressions to filter noise.

Adapt by domain. In highly specialized fields (life sciences, legal, 
e-commerce), hybrid is essential. In broad consumer domains, you may 
lean more on vectors, but don’t drop lexical entirely.

Best Practices from The RAG Blueprint

Vespa natively unifies hybrid retrieval in a single engine. No external 
re-rankers or duplicated indexes. Handle billions of documents and petabytes 
of data with Vespa’s millisecond-latency hybrid search 

Pro-Tip in Vespa

Figure 3: Hybrid Venn Diagram

Preferred

Best Practices for Large-Scale RAG Applications
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As applications grow, retrieval and ranking needs diversify. 

Different use cases require different parameters, filters, and 

ranking models. 

If you try to manage all of this with raw parameters in every 

request, complexity quickly spirals out of control. You end up 

duplicating logic, introducing inconsistencies, and making 

experimentation painful.

Query profiles solve this by acting as named, reusable 

configurations. Instead of hardcoding dozens of parameters for 

each request, you define a profile once and reference it 

wherever it’s needed.

A query profile bundles together:

● Query parameters (how many results to fetch, what filters 

to apply)

● Ranking expressions (relevance scoring functions, learned 

models)

● Filters and constraints (time range, access control, business 

rules)

Query profiles allow your RAG application to grow in scale and 

sophistication without becoming unmanageable. They make 

retrieval strategies modular, maintainable, and adaptable so 

you can support dozens of use cases while still evolving your 

ranking models and business rules with minimal friction.

Organizing Queries for Scale

Define Profiles for Each Use Case: Examples include “semantic search,” 
“hybrid search,” or “recommendations.”

Leverage Multi-Phase Ranking Inside Profiles: Each profile can specify 
first-phase retrieval, second-phase reranking, and global ranking separately.

Iterate Safely: You can test new ranking models by switching profiles in 
controlled rollouts, rather than changing client code.

Best Practices from The RAG Blueprint

In Vespa, query profiles are built into the engine. They can inherit from each 
other to reduce duplication and bundle parameters, ranking expressions, 
filters, and models into one reusable configuration. Unlike other platforms that 
need duplicated configs or custom middleware, Vespa handles it natively.

Pro-Tip in Vespa

Figure 4: Raw parameters vs. query profiles

Best Practices for Large-Scale RAG Applications
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When a query runs, the system’s first job isn’t to find the single 

best answer. It’s to gather a candidate set of potentially 

relevant documents. This is recall: how effectively the system 

casts a wide enough net to ensure that the truly relevant items 

are included in the pool.

In RAG, recall is critical because an LLM can only generate 

answers from the context it receives. If relevant documents are 

missed in the first-stage recall, no amount of reranking or LLM 

reasoning can bring them back. Strong recall improves answer 

completeness and directly reduces hallucinations.

Optimizing recall means gathering good-enough coverage at 

low cost, then letting later phases (re-rankers, ranking models, 

and the LLM) refine for precision. The goal isn’t perfect 

accuracy up front, but efficient breadth: high coverage without 

paying for expensive full-precision vector math across billions 

of documents.

Optimizing Recall with Binary Vectors

Use binary vectors for recall. They’re fast, memory-light, and cheap, 
making them ideal for broad candidate gathering.

Re-rank with full precision. Apply dense vectors, hybrid lexical + 
semantic features, and business logic to the smaller candidate set for 
accuracy.

Balance recall depth and cost. Too shallow, and you miss context; too 
deep, and you waste compute. Vespa lets you tune this tradeoff directly in 
your schema and ranking expressions.

Best Practices from The RAG Blueprint

Vespa lets you store both binary and dense embeddings in the same 
schema and use them in different ranking phases. 

You can run cheap recall with binary vectors, then seamlessly pass 
candidates into a dense vector reranker or a hybrid ranking expression, all 
inside Vespa, no external systems needed.

Pro-Tip in Vespa

Figure 5: Recall with binary vectors

Best Practices for Large-Scale RAG Applications
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Field design is about structuring your content into meaningful 

parts so the retrieval system can treat them differently.  It’s 

about deciding what counts as a separate “field” (titles, bodies, 

metadata, and embeddings) in your schema and how those 

fields are weighted or modeled for search and ranking. 

In domains where a title conveys key meaning (scientific 

papers, product listings, legal cases), field design strongly 

boosts retrieval quality.

While multiple fields improve control, they also increase 

complexity and resource usage. Done right, it improves 

relevance without inflating cost.

Designing Fields: Titles, Bodies, & Embeddings

For textual fields: it’s almost always worth splitting data into meaningful 
fields (e.g., title vs. body). Matches in titles should carry more weight than 
matches buried deep in the body.

For embeddings: the trade-off is trickier. Splitting embeddings by field 
(title embedding + body embedding) doubles cost and benefits are 
smaller compared to text fields. Use separate embeddings only if the 
field-level semantic differences are critical.

Best Practices from The RAG Blueprint

Leverage Vespa’s schema flexibility: Vespa lets you store both lexical fields 
and embeddings side by side, apply different weights, and combine them 
in ranking without external preprocessing.

Pro-Tip in Vespa

Figure 6: Field design

Best Practices for Large-Scale RAG Applications
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Effective ranking requires more than just embeddings or 

keyword matches. It depends on combining multiple signals 

that reflect both semantic meaning and real-world context. 

Metadata and additional signals play a critical role in ensuring 

that the most relevant, reliable, and useful results rise to the 

top. Attributes such as author, publish date, category, or region 

help the system distinguish between documents that might 

look similar in content but serve very different purposes. It also 

enables precise filtering and faceting, allowing users to drill 

down into exactly the subset of results they need.

Additional signals further refine ranking by capturing real-world 

usage and quality indicators. These might include user 

engagement, click-through rates, freshness, or popularity. 

Signals help disambiguate when multiple results seem equally 

relevant in text or vector space, ensuring the system surfaces 

the items that are not only similar but also useful.

Combining Signals

Write signals directly into your documents: Many systems use a separate 
“feature store” and only apply signals at the final re-ranking stage, but this 
restricts their influence to the top-k documents.

Model Metadata as First-Class Fields: Always include structured attributes 
like category, author, date, product type, or jurisdiction in your schema.

Boost by Field Importance: Weight fields differently based on how users 
interpret them. For example, a match in the title should carry more influence 
than one buried deep in the body, while publish date can be used to boost 
recency.

Use metadata to encode domain-specific priorities: In commerce, 
promote in-stock or higher-margin products; in life sciences, prioritize 
peer-reviewed research.

Include signals in your ranking formula: These real-world signals help 
disambiguate between equally relevant results and align ranking with user 
value.

Don’t rely on metadata or signals in isolation: The best results come from 
blending embeddings, text relevance, and metadata features into a unified 
scoring model.

Best Practices from The RAG Blueprint

In Vespa, all data types, including text, vectors, metadata, and behavioral 
signals, can be stored, retrieved, and ranked together inside the same engine.

Pro-Tip in Vespa
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Figure 7: Ranking Signals

Best Practices for Large-Scale RAG Applications
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Strong ranking depends on combining multiple signals into a 

scoring function that can separate the truly relevant results 

from the noise. These signals include vector similarity, lexical 

matching scores, metadata features, behavioral signals, and 

sometimes hand-crafted rules such as recency or authority 

boosts. On their own, each signal has limitations, but together, 

they provide a rich, multi-dimensional picture of relevance. 

At the core of this process are ranking models: algorithms that 

learn or encode how to weight and combine different features.

Ranking is not static and different use cases require different 

trade-offs. For this reason, teams often deploy multiple ranking 

models simultaneously, switching between them based on use 

case, audience, or A/B testing requirements.

Ranking with Machine Learning

Don’t rely on vectors alone. Blend multiple features: combine lexical, 
semantic, metadata, and behavioral signals.

A reliable default is Gradient Boosted Decision Trees (GBDTs). They 
provide a fast, reliable baseline that balances accuracy and cost.

Layer your ranking. Use cheap models for recall, then apply heavier models 
(transformers, neural re-rankers) in later stages where precision matters 
most.

Run multiple models in parallel. Different use cases benefit from different 
ranking strategies. Keep them side by side for flexibility.

Leverage ranking profiles. In Vespa, profiles let you define, tune, and switch 
between models natively, simplifying experimentation and deployment.

Best Practices from The RAG Blueprint

Vespa’s ranking framework is fully extensible. You can embed GBDTs, neural 
models, hand-crafted rules, and hybrid signals into the same query pipeline 
so you can iterate on relevance continuously, without bottlenecks from 
external systems. 

In practice, you’ll often deploy multiple models simultaneously, for different 
use cases or to A/B test generations. Vespa lets you switch between ranking 
profiles seamlessly at query time.

Pro-Tip in Vespa

Figure 8:  Ranking model example
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In modern retrieval systems, true ranking is machine-learned: 

models that combine multiple signals to generate a rich, 

context-aware measure of relevance. This is what makes 

results feel precise, personalized, and aligned with business 

needs.

But there’s a catch: applying these ranking models directly to 

billions of documents simply doesn’t scale. Running full 

inference across every possible candidate would blow through 

compute budgets and create unacceptable latency for end 

users. Even with efficient hardware, the cost of evaluating deep 

ranking models at web or enterprise scale is prohibitive.

This tension creates the classic ranking bottleneck: the most 

accurate models are also the most computationally expensive. 

Left unchecked, they slow down systems, inflate costs, and 

limit the size of candidate pools you can reasonably consider. 

That’s why retrieval architectures should rely on multi-phase 

ranking: using lightweight functions to narrow down the 

candidate set, and only then applying more expensive, 

machine-learned models on the top-k results.

By layering ranking in this way, systems achieve the best of 

both worlds: scalable retrieval across billions of items, 

combined with high-precision results where it matters most.

Ranking in Multiple Phases

Use a multi-phase ranking strategy:

● First phase: Use a lightweight function (lexical score, approximate 
vector similarity, or both) to reduce the candidate pool.

● Second phase: Apply machine-learned ranking on the top-k results 
(e.g., 100–1000).

● Chunk selection: For large documents, add a third layer: rank chunks 
within retrieved documents to pass only the most relevant spans to 
the LLM.

Best Practices from The RAG Blueprint

Vespa integrates all three phases natively. Lightweight retrieval, 
machine-learned ranking, and chunk-level scoring can be defined in a single 
query pipeline and executed at scale

Pro-Tip in Vespa

Figure 9: Phased ranking

Best Practices for Large-Scale RAG Applications
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Building scalable, high-quality RAG applications requires more than 

just “vector search.” It’s about:

● Choosing the right retrieval unit

● Combining lexical and vector signals

● Using binary vectors to control costs

● Organizing queries for maintainability

● Embedding metadata and signals directly in documents

● Applying multiphase ranking with chunk selection

Vespa provides a unified platform for all of these capabilities, 

retrieval, ranking, chunking, and serving models at scale, without the 

brittle handoffs between external systems.

If you’re moving beyond prototypes and need RAG that actually 

scales, these practices can help you build applications that are both 

cost-efficient and accurate.

Go from theory to production with The RAG Blueprint.

Conclusion

Document name here
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Customer Case Studies

Perplexity, one of the fastest-growing 

AI-powered answer engines, relies on Vespa.ai 

to power retrieval at massive scale. 

Vespa serves as the backbone of Perplexity’s 

RAG pipeline, handling billions of documents 

and over 100 million weekly queries with low 

latency. 

By combining vector similarity, lexical matching, 

metadata, and custom ranking functions in one 

platform, Vespa ensures that Perplexity 

retrieves the most accurate, context-rich 

passages for its large language models. This 

allows Perplexity to deliver fast, precise, and 

trustworthy answers to millions of users 

worldwide—all without compromising on scale, 

speed, or cost efficiency.

Learn More

Onyx.app, the open-source enterprise search 

and knowledge assistant, uses Vespa.ai to deliver 

scalable, cost-efficient retrieval for corporate 

data. 

Onyx leverages Vespa’s hybrid retrieval, 

combining vectors, text, and structured 

metadata, along with Vespa Cloud’s autoscaling 

and resource suggestions to keep operations 

efficient. 

The result is a robust enterprise RAG platform 

that can index millions of internal documents, 

respect access controls, and surface the most 

relevant information instantly for business users.

Learn More

BigData.com, a leading market intelligence 

platform, relies on Vespa.ai to deliver real-time 

search and insights across vast collections of 

financial and business data. 

Vespa serves as the foundation of their retrieval 

layer, combining vector similarity, lexical 

matching, and structured filters to surface the 

most relevant results instantly. 

By running retrieval and ranking in-cluster at 

scale, Vespa ensures that BigData.com provides 

analysts and decision-makers with fast, 

accurate, and cost-efficient access to billions of 

data points.

Learn More

Bigdata.comOnyxPerplexity

14

https://vespa.ai/perplexity/
https://blog.vespa.ai/using-vespa-cloud-resource-suggestions-to-optimize-costs/?_gl=1*ms0vmf*_gcl_au*MTcxODg1NjI4LjE3NTc1MDkwMzA.
https://vespa.ai/ravenpack-launches-bigdata-com-with-vespa-ai-to-revolutionize-billion-scale-vector-search-for-financial-research/


Interested to learn more? We have many different resources and 
information available through our social platforms

About Vespa.ai
Vespa.ai is a platform for building and running real-time AI-driven 

applications for search, recommendation, personalization, and RAG. It 

enables enterprise-wide AI deployment by efficiently managing data, 

inference, and logic, handling large data volumes and over 100K 

queries per second. Vespa supports precise hybrid search across 

vectors, text, and structured metadata. Available as both a managed 

service and open source, it's trusted by organizations like Spotify, 

Vinted, Wix, and Yahoo. The platform offers robust APIs, SDKs for 

integration, comprehensive monitoring metrics, and customizable 

features for optimized performance.

GitHub Twitter LinkedIn YouTube
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